Ambient pressure growth of nickelate single crystals with superconductivity over 90 K under high pressure

(Session 1, Invited talk)

Feiyu Li,^{1†} Zhenfang Xing,^{2†} Di Peng,^{3,2*} Jie Dou,^{4,5} Ning Guo,⁶ Liang Ma,^{4,7,8} Yulin Zhang,¹ Lingzhen Wang,¹ Jun Luo,⁴ Jie Yang,⁴ Jian Zhang,¹ Tieyan Chang,⁹ Yu-Sheng Chen,⁹ Weizhao Cai,^{10,11} Jinguang Cheng,^{4,5} Yuzhu Wang,¹² Zhidan Zeng,² Qiang Zheng,⁶ Rui Zhou,^{4,5} Qiaoshi Zeng,^{2,3*} Xutang Tao,^{1*} and Junjie Zhang^{1*}

¹State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Jinan, Shandong 250100, China

²Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China

³Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments (MFree), Institute for Shanghai Advanced Research in Physical Sciences (SHARPS), Shanghai 201203, China

⁴Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

⁵School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

⁶CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

⁷Key Laboratory of Materials Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China

⁸Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China

⁹NSF's ChemMatCARS, University of Chicago, Lemont, Illinois 60439, United States ¹⁰School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China

¹¹Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China ¹²Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China

Abstract: Recently, the Ruddlesden-Popper bilayer nickelate La₃Ni₂O₇ has emerged as a superconductor with a transition temperature (T_c) of ~ 80 K above 14 GPa. Efforts to search for nickelate superconductors with higher T_c , to grow reproducible high-quality single crystals, and to eliminate reliance on demanding high gas pressure synthesis conditions, remain significant challenges. Here we report superconductivity up to 92 K ($T_{c,max}^{onset} = 92$ K and $T_{c,max}^{zero} = 73$ K @ 21 GPa) under high pressure in single crystals of bilayer nickelate synthesized at ambient pressure using flux methods. Notably, higher $T_{c,max}$ correlates with larger in-plane lattice distortion at ambient conditions for bilayer nickelates. Furthermore, we observed a structural transition from monoclinic $P2_1/a$ to tetragonal I4/mmm at ~ 18 GPa, indicating that tetragonal structure is not a prerequisite for superconductivity to appear in this bilayer nickelate. This study provides an easy-to-access method for growing reproducible high-quality bilayer nickelate single crystals and offers new insights into achieving higher T_c superconductivity. [1]

[1] Li et al. arXiv: 2501.14584 (2025).